Компьютерные подсказки - Znamenka24

В чем смысл коллайдера. Большой адронный коллайдер - зачем он нужен? Процесс ускорения частиц в коллайдере

На этой неделе, спустя два года ожиданий, Большой адронный коллайдер - ускоритель заряженных частиц, благодаря которому в 2012 году открыли бозон Хиггса - могут снова запустить.

Гигантский коллайдер (частью которого является подземный туннель на границе Франции и Швейцарии длиною в 27 километров) был отключен в феврале 2013 года, чтобы учёные могли внести изменения в его конструкцию. Теперь же учёные вновь включают его, чтобы при помощи серии экспериментов совершить скачок в изучении физики.

1. Постойте-постойте, а что такое Большой адронный коллайдер?

Туннель Большого адронного коллайдера
БАК был построен в 2008 году организацией CERN (Европейский совет ядерных исследований). Создание самого большого в мире адронного коллайдера обошлось в девять миллиардов долларов. Невероятная длина его подземных туннелей позволяет физикам проводить невероятные эксперименты.

Грубо говоря, чаще всего эксперименты включают в себя разгон заряженных частиц до 99.9999% от скорости света (заставляя их перемещаться по кругу 11000 раз в секунду) и последующее их столкновение при помощи гигантских магнитов. Сложные сенсоры считывают всевозможную информацию, полученную после столкновения этих частиц.

2. Зачем учёным сталкивать частицы?


Информация, полученная одним из сенсоров, в БАК
Огромное количество энергии, которое выделяется после столкновения, заставляет частицы распадаться и в последствии собираться в довольно-таки необычные конструкции. Подобные эксперименты помогают найти недостатки в стандартной модели физики - на данный момент это лучший способ предсказать поведение частиц.

Физикам интересны такие эксперименты потому, что, хоть стандартная модель и считается довольно-таки точной, она всё же неполная. «Она эффективна для предположений, но физики не так уж их любят», - прокомментировал Патрик Коппенбург, ученый, работающий с БАК.

Сильнейший недостаток модели - это то, что она не учитывает силу гравитации (она описывает только три других фундаментальных взаимодействия) и такие понятия, как тёмная материя и тёмная энергия. Она также не очень-то хорошо работает с нынешними теориями о происхождении Вселенной.

Другими словами, стандартная модель физики - это лучшее описание того, как работают вещи вокруг нас. Однако, по словам Коппенбурга, эта теория «точно в каком-то месте ошибочна». Сталкивая частицы в БАК, он и другие учёные пытается найти отклонения от этой модели.

3. Что эти учёные уже обнаружили

Диаграмма 17-ти фундаментальных частиц стандартной модели, включая бозон Хиггса
Наиболее важным событием за всю историю Большого адронного коллайдера стало открытие бозона Хиггса.

Еще с 1960-х годов считалось, что бозон Хиггса - часть поля Хиггса, невидимого поля, проходящего сквозь пространство и влияющего на все частицы. Согласно предположениям физиков, именно благодаря этому полю у частиц есть масса (или же сопротивление при передвижении).
Физик Брайн Грин писал в своей статье:

«Представьте, что шарик для пинг-понга погрузили под воду. Когда вы пытаетесь погрузить его глубже, то он кажется в разы более тяжелым, чем он был вне воды. Его взаимодействие с водой приводит к увеличению его массы. То же случается с частицами, погруженными в поле Хиггса»

В принципе, никого не удивило открытие бозона и поля Хиггса, ведь все законы стандартной модели указывали на их существование. Загвоздка заключалась в том, что не было прямых доказательств. «Когда мы строили БАК, то надеялись либо обнаружить бозон Хиггса, либо доказать, что его не существует», - комментирует Коппенбург.

В 2012 году, спустя три года экспериментов, физики доказали существование бозона Хиггса. Было высчитано, что сразу после столкновения бозон Хиггса разлагался на другие частицы, следуя определенным закономерностям. Данные, собранные после столкновения протонов, помогли понять и предсказать эти закономерности.

Это открытие невероятно важно: поле Хиггса - краеугольный камень стандартной модели. Благодаря ему, все другие уравнения становятся в разы понятней. Мы смогли обнаружить его спустя 50 лет после того, как его существование было предсказано на бумаге, а это значит, что мы на верном пути в изучении устройства нашей вселенной.

4. Почему БАК снова включают?


Туннели Большого адронного коллайдера
Все эксперименты, что проводились в прошлом, были лишь началом. Спустя несколько лет работы над улучшением магнитов (они ускоряют и контролируют движение частиц) и сенсоров, начнется новая эра: теперь серия экспериментов включает в себя разгон и столкновение частиц, заряд которых будет в два раза больше предыдущего.

Новые столкновения частиц позволят учёным открыть новые (и, возможно, даже большие) частицы, а также изучить бозон Хиггса и его поведение в разных условиях.

«Мы надеемся открыть элементы, не предсказанные стандартной моделью. К примеру, частицы настолько тяжелые, что они не были еще открыты, или же другие типы отклонений», - делится надеждами Коппенбург.

Возможно, к примеру, что бозон Хиггса - это лишь одна из нескольких частиц из механизма Хиггса.

Достаточное количество новой информации, по словам Коппенбурга и других учёных, поможет нам открыть новые частицы и улучшить нынешнюю стандартную модель, позволив ей точно взаимодействовать с тёмной материей, рождением вселенной и другими плохо изученными темами.

5. Собираются ли в будущем создавать ускорители частиц еще больших размеров?


Схема международного линейного коллайдера
Да. Физики надеются со временем построить ускорители гораздо больших размеров, которые позволят разгонять частицы с большой энергией, чем БАК. Это, в свою очередь, позволит открыть новые частицы и даст более чёткое понимание тёмной материи. Длина международного линейного коллайдера, к примеру, будет составлять 32 километра. В отличие от БАК, где частицы разгоняются по кругу, в этом проекте они будут сталкиваться друг с другом напрямую. Проект всё еще рассматривается, но учёные надеются, что такой ускоритель получится построить в Японии, и он начнёт свою работу к 2026 году.

Когда-то всем казалось, что гигантский ускоритель частиц построят и в США. В 1989 году Конгресс даже согласился потратить шесть миллиардов долларов на постройку сверхпроводящего супер-коллайдера. Строить его собирались в Ваксахэчи, штат Техас, длина его туннелей должна была достигать 86 километров. Сила, с которой в нём сталкивались бы частицы, была бы в четыре раза сильней, чем у Большого адронного коллайдера. Но к сожалению, в 1993 году стоимость проекта выросла до одиннадцати миллиардов долларов, и Конгресс решил прикрыть его, несмотря на то, что два миллиарда уже были потрачены на строительство 25 километров туннеля.

Оригинал: Vox
Перевел.

Где находится большой адронный коллайдер?

В 2008 году CERN (Европейский совет ядерных исследований) завершил строительство сверхмощного ускорителя частиц, названного Большой адронный коллайдер. По-английски: LHC – Large Hadron Collider. CERN – международная межправительственная научная организация, образованная в 1955 году. По сути, это главная лаборатория мира в областях высоких энергий, физики частиц и солнечной энергетики . Членами организации являются порядка 20 стран.

Зачем нужен большой адронный коллайдер?

В окрестностях Женевы в 27-километровом (26 659 м) круговом бетонном тоннеле создано кольцо сверхпроводящих магнитов для разгона протонов. Предполагается, что ускоритель поможет не только проникнуть в тайны микроструктуры материи, но и позволит продвинуться в поисках ответа на вопрос о новых источниках энергии в глубине материи.

С этой целью одновременно со строительством самого ускорителя (стоимостью свыше 2 млрд долларов) созданы четыре детектора частиц. Из них два больших универсальных (CMS и ATLAS) и два – более специализированных. Общая стоимость детекторов приближается также к 2 млрд долларов. В каждом из больших проектов CMS и ATLAS приняли участие свыше 150 институтов из 50 стран, в том числе российских и белорусских.

Охота за неуловимым бозоном Хиггса

Как работает адронный коллайдер ускоритель? Коллайдер – это крупнейший ускоритель протонов, работающий на встречных пучках. В результате ускорения каждый из пучков будет иметь энергию в лабораторной системе 7 тераэлектрон-вольт (ТэВ), то есть 7x1012 электрон-вольт. При столкновении протонов образуется множество новых частиц, которые будут регистрироваться детекторами. После анализа вторичных частиц полученные данные помогут ответить на фундаментальные вопросы, волнующие ученых, занимающихся физикой микромира и астрофизикой. В числе главных вопросов – экспериментальное обнаружение бозона Хиггса.

Ставший «знаменитым» бозон Хиггса – гипотетическая частица, являющаяся одним из главных компонентов так называемой стандартной, классической модели элементарных частиц. Назван по имени британского теоретика Питера Хиггса, предсказавшего его существование в 1964 году. Считается, что хиггсовские бозоны, будучи квантами поля Хиггса, имеют отношение к фундаментальным вопросам физики. В частности – к концепции происхождения масс элементарных частиц.

2-4 июля 2012 ряд экспериментов на коллайдере выявили некую частицу, которую можно соотнести с бозоном Хиггса. Причем, данные подтвердились при измерении и системой ATLAS, и системой CMS. До сих пор идут споры, действительно ли открыт пресловутый бозон Хиггса, или это другая частица. Факт в том, что обнаруженный бозон – самый тяжелый из ранее фиксировавшихся. Для решения фундаментального вопроса были приглашены ведущие физики мира: Джеральд Гуральник, Карл Хаген, Франсуа Энглер и сам Питер Хиггс, теоретически обосновавший в далеком 1964 году существование бозона, названного в его честь. После анализа массива данных, участники исследования склонны считать, что бозон Хиггса действительно обнаружен.

Многие физики надеялись, что при исследовании бозона Хиггса выявятся «аномалии», которые заставили бы говорить о так называемой «Новой физике». Однако к концу 2014 года обработан почти весь массив данных, накопленный за три предыдущих года в результате экспериментов на БАК, и интригующих отклонений (за исключением отдельных случаев) не выявлено. На поверку оказалось, что двухфотонный распад пресловутого бозона Хиггса оказался, по словам исследователей, «слишком стандартным». Впрочем, намеченные на весну 2015 года эксперименты могут удивить научный мир новыми открытиями.

Не бозоном единым

Поиск бозона Хиггса – не самоцель гигантского проекта. Для ученых также важен поиск новых видов частиц, позволяющих судить о едином взаимодействии природы на ранней стадии существования Вселенной. Сейчас ученые различают четыре фундаментальных взаимодействия природы: сильное, электромагнитное, слабое и гравитационное. Теория предполагает, что на начальной стадии Вселенной, возможно, существовало единое взаимодействие. Если новые частицы будут открыты, то подтвердится эта версия.

Физиков также волнует вопрос о загадочном происхождении массы частиц. Почему частицы вообще имеют массу? И почему они имеют такие массы, а не другие? Попутно здесь всегда имеется в виду формула Е =mc ². В любом материальном объекте есть энергия. Вопрос в том, как ее высвободить. Как создать такие технологии, которые позволили бы высвобождать ее из вещества с максимальным коэффициентом полезного действия? На сегодня это основной вопрос энергетики.

Иными словами, проект Большого адронного коллайдера поможет ученым найти ответы на фундаментальные вопросы и расширить знания о микромире и, таким образом, – о происхождении и развитии Вселенной.

Вклад белорусских и российских ученых и инженеров в создание БАК

На этапе строительства европейские партнеры из CERN обратились к группе белорусских ученых, имеющих серьезные наработки в этой области, принять участие в создании детекторов для LHC с самого начала проекта. В свою очередь, белорусские ученые пригласили к сотрудничеству коллег Объединенного института ядерных исследований из наукограда Дубна и других российских институтов. Специалисты единой командой приступили к работе над так называемым детектором CMS – «Компактным мюонным соленоидом». Он состоит из многих сложнейших подсистем, каждая из которых сконструирована так, чтобы выполнялись специфические задачи, при этом совместно они обеспечивают идентификацию и точное измерение энергий и углов вылета всех частиц, рождающихся в момент протонных столкновений в БАК.

Белорусско-российские специалисты также участвовали в создании детектора ATLAS. Это установка высотой 20 м, способная измерить траектории частиц с высокой точностью: до 0,01 мм. Чувствительные датчики внутри детектора содержат около 10 млрд транзисторов. Приоритетная цель эксперимента ATLAS состоит в обнаружении бозона Хиггса, изучении его свойств.

Без преувеличения, наши ученые внесли существенный вклад в создание детекторов CMS и ATLAS. Некоторые важные компоненты были изготовлены на минском Машиностроительном заводе им. Октябрьской революции (МЗОР). В частности – торцевые адронные калориметры для эксперимента CMS. Кроме того, завод произвел весьма сложные элементы магнитной системы детектора ATLAS. Это крупногабаритные изделия, требующие владения специальными технологиями обработки металлов и сверхточной обработки. По оценке техников CERN, заказы были выполнены блестяще.

Нельзя недооценивать и «вклад личностей в историю». Например, инженер кандидат технических наук Роман Стефанович ответственен в проекте CMS за сверхточную механику. В шутку даже говорят, что без него CMS не был бы собран. Но если серьезно, то можно вполне определенно утверждать: без него сроки сборки и наладки при требуемом качестве не были бы выдержаны. Другой наш инженер-электронщик Владимир Чеховский, пройдя достаточно сложный конкурс, сегодня отлаживает электронику детектора CMS и его мюонных камер.

Наши ученые участвуют как в запуске детекторов, так и в лабораторной части, в их эксплуатации, поддержании и обновлении. Ученые из Дубны и их белорусские коллеги полноправно занимают свои места в международном физическом сообществе CERN, которое трудится ради получения новой информации о глубинных свойствах и строении материи.

Многие, уже, так или иначе, но слышали термин «Большой адронный коллайдер». Для простого обывателя из этих слов знакомо только слово «большой». Но что же это на самом деле? Да и можно ли простому смертному освоить этот физический термин.

Большой адронный коллайдер (БАК) представляет собой установку для опытов ученых-физиков с элементарными частицами. По формулировке, БАК является ускорителем заряженных частиц на встречных пучках, предназначенный для разгона тяжелых ионов и протонов и изучения продуктов соударений . Иными словами, ученые сталкивают атомы, а потом смотрят, что из этого получилось.

В данное время – это самая крупная экспериментальная установка в мире. Размер этой установки можно сравнить с городом диаметром, почти в 27 километров, который находится на стометровой глубине. Эта установка находится недалеко от Женевы, а на ее строительство ушло 10 миллиардов долларов.

Одной из главных задач установки БАК (по утверждению ученых) является поиск бозона Хиггса. Опять же, простыми словами – это попытка найти частицу, которая отвечает за наличие массы.

Параллельно с этим, на коллайдере проводятся эксперименты по поиску:

— частиц вне «Стандартной модели»,

— магнитных монополей (частиц, обладающих магнитным полем),

— так же, проходит исследование квантовой гравитации и исследование микроскопических дыр.

Вот эти «микроскопические черные дыры» и не дают многим покоя. Причем волнуются не только те, для кого знакомство с физикой закончилось на школьной скамье, но и те, кто продолжает ее изучать на профессиональном уровне.

Что такое черная дыра известно всем и со школьной скамьи и по фантастическим рассказам и фильмам. Многие (в том числе и ученые) переживают, что подобные эксперименты, часть из которых построена для попытки воссоздания «большого взрыва» (после которого, по теории возникла вселенная) приведут к неизбежному краху всей планеты.

Ученые успокаивают, что никакой опасности от этих опытов и экспериментов нет. Но есть еще один факт, которые никогда не учитывают светила науки. Речь идет об оружии.

Каждый нормальный ученый, делая открытие или что-либо, изобретая – делает это с двумя целями. Первая цель помочь миру жить лучше, а вторая менее гуманная, но человеческая – это прославиться.

Но, почему-то все изобретения (без преувеличений), занимают свое место в создании орудий для убийства того же самого человечества и прославленных ученных. Даже такие открытия, которые для нас стали обывательскими (радио, механические двигатели, спутниковое телевидение и т.д.), не говоря уже об атомной энергии, прочно заняли свое место в «оборонке».

В 2016 году, в Подмосковье планируют запустить установку, подобную европейскому БАКу . Но только, российская установка, в отличие от «старшего брата», должна в реальности воссоздать «большой взрыв» в малых масштабах.

И кто даст гарантию, что соседствующая Москва (а с ней и Земля), не станет прародительницей новой «черной дыры» в огромной вселенной?


В этом году ученые планируют воспроизвести в ядерной лаборатории те далекие первозданные условия, когда еще не было протонов и нейтронов, а существовала сплошная кварк-глюонная плазма. Иными словами, исследователи надеются увидеть мир элементарных частиц в том виде, каким он был всего через доли микросекунд после Большого взрыва, то есть после образования Вселенной. Программа называется «Как все началось». Кроме того, уже более 30 лет в научном мире выстраиваются теории, объясняющие наличие массы у элементарных частиц. Одна из них предполагает существование бозона Хиггса. Эту элементарную частицу называют еще божественной. Как сказал один из сотрудников ЦЕРН, «поймав следы Хиггс-бозона, я приду к собственной бабушке и скажу: посмотри-ка, пожалуйста, - из-за этой маленькой штучки у тебя столько лишних килограммов». Но экспериментально существование бозона пока не подтверждено: все надежды - на ускоритель LHC.

Большой адронный коллайдер – ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ.

Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад. Тогда ученые еще только обнаружили всевозможные виды таинственных лучей: рентгеновские, катодное излучение. Откуда они возникают, одинаковой ли природы их происхождение и, если да, то какова она?
Сегодня мы имеем ответы на вопросы, позволяющие гораздо лучше понять происхождение Вселенной. Однако в самом начале XXI века перед нами стоят новые вопросы, ответы на которые ученые надеются получить с помощью ускорителя БАК. И кто знает, развитие каких новых областей человеческих знаний повлекут за собой предстоящие исследования. А пока же наши знания о Вселенной недостаточны.

Комментирует член-корреспондент РАН из Института физики высоких энергий Сергей Денисов:
- В этом коллайдере участвует много российских физиков, которые связывают определенные надежды с открытиями, которые могут там произойти. Основное событие, которое может случиться – это открытие так называемой гипотетической частицы Хиггса (Питер Хиггс — выдающийся шотландский физик.). Роль этой частицы чрезвычайно важна. Она ответственна за образование массы других элементарных частиц. Если такую частицу откроют, то это будет величайшим открытием. Оно подтвердило бы так называемую Стандартную модель, которая сейчас широко используется для описания всех процессов в микромире. Пока эта частица не будет открыта, эту модель нельзя считать полностью обоснованной и подтвержденной. Это, конечно, самое первое, чего ученые ожидают от этого коллайдера (LHC).
Хотя, вообще говоря, никто не считает эту Стандартную модель истиной в последней инстанции. И, скорее всего, по мнению большинства теоретиков, она является приближением или, иногда говорят, «низкоэнергетическим приближением» к более Общей теории, которая описывает мир на расстояниях в миллион раз меньших, чем размер ядер. Это примерно как теория Ньютона является «низкоэнергетическим приближением» к теории Эйнштейна – теории относительности. Вторая важная задача, связанная с коллайдером – это попытаться перейти за пределы этой самой Стандартной модели, то есть совершить переход к новым пространственно-временным интервалам.

Физики смогут понять, в каком направлении надо двигаться, чтобы построить более красивую и более Общую теорию физики, которая будет эквивалентна таким малым пространственно-временным интервалам. Те процессы, которые там изучаются, воспроизводят по сути процесс образования Вселенной, как говорят, «в момент Большого Взрыва». Конечно, это для тех, кто верит в эту теорию о том, что Вселенная создавалась таким образом: взрыв, затем процессы при супервысоких энергиях. Оговариваемое путешествие во времени может оказаться связанным с этим Большим Взрывом.
Как бы там ни было, БАК – это достаточно серьезное продвижение в глубь микромира. Поэтому могут открыться совершенно неожиданные вещи. Скажу одно, что на БАКе могут быть открыты совершенно новые свойства пространства и времени. В каком направлении они будут открыты – сейчас сказать трудно. Главное – прорываться дальше и дальше.

Справка

Европейская организация ядерных исследований (ЦЕРН) — крупнейший в мире научно-исследовательский центр в области физики частиц. К настоящему времени число стран-участниц выросло до 20. Около 7000 ученых, представляющих 500 научных центров и университетов, пользуются экспериментальным оборудованием ЦЕРН. Кстати, в работе над Большим адронным коллайдером принимал непосредственное участие и российский Институт ядерной физики СО РАН. Наши специалисты сейчас заняты монтажом и тестированием оборудования, которое разработано и произведено в России для этого ускорителя. Ожидается, что Большой адронный коллайдер будет запущен в мае 2008 года. Как выразился Лин Эванс, глава проекта, ускорителю не хватает лишь одной детали – большой красной кнопки.

В этом вопросе (и ему подобных) любопытно появление слов «на самом деле» – как будто есть некая скрытая от непосвящённых суть, охраняемая «жрецами науки» от обывателей, тайна, которую нужно раскрыть. Однако при взгляде изнутри науки тайна исчезает и места этим словам нет – вопрос «зачем нужен адронный коллайдер» ничем принципиально не отличается от вопроса «зачем нужна линейка (или весы, или часы и т.д.)». То, что коллайдер – штука большая, дорогая и по любым меркам сложная – дела не меняет.

Наиболее близкой аналогией, позволяющей понять, «зачем это нужно», является, на мой взгляд, линза. Человечество знакомо со свойствами линз с незапамятных времён, однако только в середине прошлого тысячелетия было понято, что определённые комбинации линз могут быть использованы как приборы, позволяющие рассматривать очень маленькие либо очень далёкие объекты – речь идёт, конечно, о микроскопе и телескопе. Нет никаких сомнений, что вопрос, зачем всё это нужно, неоднократно задавался при появлении этих новых для современников конструкций. Однако он снялся с повестки дня сам собой, по мере того, как ширились области научного и прикладного применения и того, и другого устройства. Заметим, что, вообще говоря, это разные приборы – рассматривать звёзды в перевёрнутый микроскоп не получится. Большой адронный коллайдер же, парадоксальным образом, объединяет их в себе, и может с полным основанием рассматриваться как высшая достигнутая человечеством точка эволюции как микроскопов, так и телескопов за прошедшие века. Это утверждение может показаться странным, и, разумеется, его не следует понимать буквально – в ускорителе нет линз (по крайней мере, оптических). Но по сути дела это именно так. В своей «микроскопной» ипостаси коллайдер позволяет изучать структуру и свойства объектов на уровне 10-19 метров (напомню, что размер атома водорода – примерно 10-10 метра). Ещё интереснее обстоит дело в «телескопной» части. Каждый телескоп – самая настоящая машина времени, так как наблюдаемая в нём картина соответствует тому, каким был объект наблюдения в прошлом, а именно то время назад, которое необходимо электромагнитному излучению, чтобы дойти от этого объекта до наблюдателя. Это время может составлять восемь с небольшим минут в случае наблюдения Солнца с Земли и до миллиардов лет при наблюдении далёких квазаров. Внутри Большого адронного коллайдера создаются условия, которые существовали во Вселенной через ничтожную долю секунды после Большого взрыва. Таким образом, мы получаем возможность заглянуть в прошлое почти на 14 миллиардов лет, к самому началу нашего мира. Обычные земные и орбитальные телескопы (по крайней мере, те, которые регистрируют электромагнитное излучение), обретают «зрение» лишь после эры рекомбинации, когда Вселенная стала оптически прозрачной – это произошло по современным представлениям через 380 тысяч лет после Большого взрыва.

Дальше нам предстоит решать – что делать с этим знанием: как об устройстве материи на малых масштабах, так и об её свойствах при рождении Вселенной, и именно это в конечном итоге вернёт тайну, о которой шла речь в начале, и определит, зачем же коллайдер был нужен «на самом деле». Но это решение человека, коллайдер же, с помощью которого было получено это знание, останется всего лишь прибором – возможно, самой изощрённой системой «линз», которую когда-либо видел мир.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!